
Dwarfguard 0.8.0 performance tests.
.

There are three different test types in Dwarfguard testing:

- peak tests ... to discover Dwarfg SW and deployments limits and breaking points.

Next to the test results, HW specs for environments, test description and methodology is given in the document.

The Dwarfg 0.8.0 early adopter 3 is intended to be used for up to 40000 devices.
The subject of early adopter version testing are stability and benchmark testings.
Find out more in test overview.

General Dwarfguard 0.8.0 performance testing verdict:

PASSED 2023-10-03 Test sets: Stab-2-2:C1; Stab-4-2:C2; Stab-8-2:C3; Stab-16-2:C4; Stab-16-2-H1

PASSED 2023-10-06 Test sets: Stab-4-48

PASSED 2023-11-25 Test sets: Stab-4-48-top

Test sets: Stab-4-672

Dwarfguard 0.8.0 follows performance tests of MAMAS (preceding product branding) versions 0.7.0 and 0.6.0. The results should be 
comparable when the new features are not enabled (especially DCL which may impact performance noticeably when a big number 

of devices is sending data).

- stability tests ... runs for a number of hours. Tests stability under standard conditions and raises flags in case of 
memory leaks.
- benchmark tests ... to measure different HW / VMs for comparability and clue for sizing deployments.
Proves Dwarfg deployment with particular sizing is able to handle the tested number of devices.

Stability basic 
tests

Stability 
medium test
Stability max 
(40000) test
Stability long 

test



Testing overview

As mentioned earlier (Testing summary), there are three types of performance tests. All are here because we need to measure:
   - number of accepted and dropped requests (and resulting percentage) FOR ALL TESTS
   - time for peak and benchmark tests
   - memory usage for stability tests
   - CPU utilization (%) for stability tests
   - dwarfgd log review to make detail search for warnings and errors (for stability tests)
   - number of pushing threads causing requests drops+resends (peak test)

Next to measurements there are a few important calculated metrics:
   - ideal maximal throughput (benchmark test)
   - typical maximal throughput (20% of ideal) (benchmark test)
   - number of pushes per second (benchmark and peak test)
   - maximal recommended # of devices per deployment type (HW / VM specs)

Environment specs CPU cores CPU threads RAM MiB stability test benchmark peak test
C1 1 1 512
C2 2 2 1024
C3 4 4 2048
C4 8 8 4096

AWS instance
A1 (small)
A2 (medium)
A3 (big)

H0 2 2 16384

H1 4 8 16384

H2 4 8 32768

H3 6 12 32768

Tests specs ID SSL? # of devices push/work T # of loops # of minutes Human-time Notes

Stability

Stab-2-2 Yes 1000 2/2 N/A 120 2 hours
Stab-4-2 Yes 3000 4/2 N/A 120 2 hours
Stab-8-2 Yes 10000 8/2 N/A 120 2 hours
Stab-16-2 Yes 30000 16/2 N/A 120 2 hours
Stab-4-48 Yes 3000 4/2 N/A 2880 48 hours
Stab-8-48-top Yes 40000 8/2 N/A 2880 48 hours New in 0.8.0
Stab-4-672 Yes 3000 4/2 N/A 40320 4 weeks

Benchmark

Bench-6-SSL Yes 1200 6/1,2,4,8 10 N/A Re-def in 0.8.0
Bench-6-noSSL No 1200 6/1,2,4,8 10 N/A Re-def in 0.8.0
Bench-12-SSL Yes 2400 12/1,2,4,8 10 N/A Re-def in 0.8.0
Bench-12-noSSL No 2400 12/1,2,4,8 10 N/A Re-def in 0.8.0
Bench-24-SSL Yes 4800 24/1,2,4,8 10 N/A Re-def in 0.8.0
Bench-24-noSSL No 4800 24/1,2,4,8 10 N/A Re-def in 0.8.0
Bench-48-SSL Yes 9600 48/1,2,4,8 10 N/A Re-def in 0.8.0
Bench-48-noSSL No 9600 48/1,2,4,8 10 N/A Re-def in 0.8.0

Peak

PeakR-64-max No 61440 64 N/A 10 10 minutes
PeakR-256-max No 61440 256 N/A 10 10 minutes
PeakR-1024-max No 61440 1024 N/A 10 10 minutes
PeakD-64-max No 61440 64 N/A 10 10 minutes
PeakD-256-max No 61440 256 N/A 10 10 minutes
PeakD-1024-max No 61440 1024 N/A 10 10 minutes
PeakF-64-max No 61440 64 N/A 10 10 minutes
PeakF-256-max No 61440 256 N/A 10 10 minutes
PeakF-1024-max No 61440 1024 N/A 10 10 minutes

Test run map 0.7.0 C1 C2 C3 C4 A1 A2 A3 H0 H1 H2 H3
Stab-2-2 Yes
Stab-4-2 Yes
Stab-8-2 Yes
Stab-16-2 Yes Yes
Stab-4-48 Yes
Stab-8-48-top Yes
Stab-4-672 TBD
Bench-6-SSL Yes Yes Yes Yes Yes Yes Yes Attempted
Bench-6-noSSL Yes Yes Yes Yes Yes Yes Yes Attempted
Bench-12-SSL Yes Yes Yes Yes Yes Yes Attempted
Bench-12-noSSL Yes Yes Yes Yes Yes Yes Attempted
Bench-24-SSL Experimental Experimental
Bench-24-noSSL Experimental Experimental
Bench-48-SSL
Bench-48-noSSL
PeakR-64-max v. 1.0.0 v. 1.0.0 v. 1.0.0
PeakR-256-max v. 1.0.0 v. 1.0.0 v. 1.0.0
PeakR-1024-max v. 1.0.0 v. 1.0.0 v. 1.0.0
PeakD-64-max v. 1.0.0 v. 1.0.0
PeakD-256-max v. 1.0.0 v. 1.0.0
PeakD-1024-max v. 1.0.0 v. 1.0.0
PeakF-64-max v. 1.0.0 v. 1.0.0
PeakF-256-max v. 1.0.0 v. 1.0.0
PeakF-1024-max v. 1.0.0 v. 1.0.0

Proxmox Linux container
Intel Xeon E5 2.2GHz 4C 

HT

Baremetal AMD 
E350@1.6 GHz 2C
Baremetal Core i5 
1.7GHz 4C HT
Baremetal Core i7 
2.7GHz 4C HT
Baremetal Core i7 
3.2GHz2 GHz 6C HT



Stability tests
ID / Environment → Stab-2-2 / C1 Stab-4-2 / C2 Stab-8-2 C3 Stab-16-2 C4 Stab-16-2 H1 Stab-4-48 H0 Stab-8-48-top H3 Stab-4-672 C2

Test specs

Devices 1000 3000 10000 30000 30000 3000 40000 3000
Emulator threads 2 4 8 16 16 4 8 4
Set: Time / minutes 120 120 120 120 120 2880 2880 40320
Set loop time / sec 200 200 200 200 200 200 200 200

HW specs
CPU cores 1 2 4 8 8 2 12 2
RAM / MiB 512 1024 2048 4096 32768 16384 32768 1024

Resources

Pre-test
Available MiB OS 296.00 783.00 1800.00 3800.00 30000.00 14000.00 29618.00
Used MiB OS 215 240 226 217 608 790 2420
dwarfgd RSS (MiB) 44 44 44 44 49 49 48

Post-test

Available MiB OS 265 687 1400 2700 29000 14000 28859
Used MiB OS 246 336 617 1300 1800 883 3179
mamasd RSS (MiB) 57 75 186 415 395 88 498
avg load 15 0.07 0.16 0.51 1.18 0.78 0.27 1.99
avg load 15 / cpu core 0.07 0.08 0.13 0.15 0.10 0.14 0.17 0.00

Results

Test numbers

Processesd loops 34 33 32 31 31 769 674
Total time 7302 7308 7260 7353 7427 173013 172817
Real Loop time/sec (1) 215 221 227 237 240 225 256 #DIV/0!
Estimated data-pushes 36000 108000 360000 1080000 1080000 2592000 34560000 36288000
Performed Pushes 34000 99000 320000 930000 930000 2307000 26960000
Estim. Avg reqs/sec 5.00 15.00 50.00 150.00 150.00 15.00 200.00 15.00
Rough avg reqs/sec (1) 4.66 13.55 44.08 126.48 125.22 13.33 156.00

Errors

Data ERR/retries 0 0 0 0 31 0 2
push errors (%) 0.00 0.00 0.00 0.00 0.00 0.00 0.00 #DIV/0!
push errors (1=100%) 0.000000000 0.000000000 0.000000000 0.000000000 0.000033333 0.000000000 0.000000074 #DIV/0!
Crashes 0 0 0 0 0 0 0
Reboots 0 0 0 0 0 0 0
Log entries 2 0 1 1 0 1 0

Log analysis None 1 Invalid ID None

Calculations

RSS increase MiB 13 31 142 371 346 39 450
RSS increase % 29.55 70.45 322.73 843.18 706.12 79.59 937.50
MiB per device 0.013 0.010 0.014 0.012 0.012 0.013 0.011
RAM utilization % 48.05 32.81 11.04 5.30 1.86 4.82 7.39
Max safe # of devs 2081 9143 90619 566267 1616842 62218 541620

Summary
RAM utilization note reasonable ok perfect (low) perfect (low) perfect (low) perfect (low) perfect (low)
CPU utilization note perfect (low) perfect (low) perfect (low) perfect (low) perfect (low) perfect (low) perfect (low)
Verdict PASSED PASSED PASSED PASSED PASSED PASSED PASSED TBD

Notes
(1) The results are not exact as the total time includes registration time. In reality, there are a little bit more requests per second and the loop time is a little shorter than that.

Log analysis explained

Invalid ID

CFG profile 
sync

Mid-air profile 
collision

Mid-air profile 
collision

Mid-air profile 
collision

CFG profile 
sync

(Warning) Configuration profile sync to DB was delayed during device registration period (Warning). This may happen when server is processing registration requests 
coming very fast. As fot testing case on C1 container on 1 CPU core this is considered normal when registration of 1000 devices happens in a straight line.

Mid-air profile 
collision

(Warning) Configuration profile with default values for a firmware creation attempted more than once in parallel. As all of the Advantech router device types in this test 
share the same profile, this is perfectly possible to happen. No impact on the system or data.

(Not logged in daemon log) One of the 30000 emulated devices failed to register properly (not important to log into daemon log as there may be lots of declined 
requests). This caused that device with invalid ID to fail on every of the consecutive 31 data push loops. In reality, the device would re-register again on the next loop (but 

that functionality is not implemented in the Emulator)



Results are # of processed device data pushes per second
Spec: C1 C2 C3 C4 H0 H1 H2 H3
CPU thr 1 2 4 8 2/2 4/8 4/8 6/12
RAM 512 1024 2048 4096 16384 16384 32768 32768
HW Intel Xeon E5 2CPU 4/8 each E-350 Core i5 Core i7 Core i7
Arch Server L PWR Mobile Desktop
GHz 2.2 1.6 1.7 2.7 3.2

Test Handlers

6-SSL

1 125.53 237.45 284.02 323.93 96.64 237.43 322.88 223.66
2 143.52 263.74 280.05 322.22 106.94 258.84 346.91 225.62
4 155.61 259.27 279.35 324.21 122.41 245.27 342.75 236.99
8 163.62 256.22 305.75 318.47 110.94 250.21 345.59 226.99

6-noSSL

1 532.73 593.70 542.25 571.30 399.55 536.65 478.85 394.96
2 557.02 555.35 571.09 510.49 387.63 463.24 454.16 390.84
4 529.33 583.16 509.44 489.84 412.97 389.06 481.05 333.86
8 428.75 542.35 460.86 478.21 386.09 420.42 398.39 393.66

12-SSL

1 422.55 558.79 640.98 128.42 638.80 710.52 558.69
2 428.03 631.88 720.40 136.54 638.95 708.44 556.69
4 447.04 635.47 727.37 140.65 658.71 708.79 556.94
8 449.95 581.68 727.29 143.33 658.76 705.20 556.31

12-noSSL

1 789.99 1032.92 1049.33 570.51 947.36 1019.84 920.30
2 785.82 1045.74 1044.52 574.89 932.94 1031.92 861.75
4 788.45 1050.50 1051.98 581.74 932.42 838.75 910.65
8 787.75 830.65 1049.64 579.74 876.20 1012.96 909.75

24-SSL

1 730.70 884.27
2 734.38 803.13
4 732.87 883.83
8 738.21 880.18

24-noSSL

1 1012.33 1112.64
2 1018.36 1112.61
4 1031.06 1114.66
8 1030.49 1120.56

48-SSL

1
2
4
8

48-noSSL

1
2
4
8

Ideal max devs 25106 47490 56804 64786 19328 47486 64576
Safe max devs 20085 37992 45443 51829 15462 37989 51661

Notes/colors explained

Findings

Errors occured (network connection/resolution). The real result would be higher (another device 
handled instead of test tool thread waiting for request timeout) Also, refused device would retry later.
At the time tests were performed, available traffic generator HW performance was too low to saturate 

the device under test. Unable to provide correct results at the moment but it would definitely be higher.
Amounts are valid for agent regular period of 200 seconds. For e.g. the regular data-push period of 
100 seconds you need to divide the number by 2! (NOTE: the default interval is 260 seconds leaving 
some manuever space). NOTE: the result does NOT take into account machine RAM, it is simply an 
approximation of the maximal number of devices that can be handled - in reality, you need to check 
the stability tests results for memory limits! Also note that the numbers are computed from the lowest 
throughput values available (from the weakest test) and for SSL-deployment. Looking at the bigger 
machines able to handle stronger tests the numbers are practically multiplied and note you can also 
offload SSL layer thus bring the number of processed devices higher again.

The number of Dwarfguard handling threads does not affect the throughput much. The likely reason is 
that the processing of SSL layer and processing done by Apache before handing the request over to 
the application itself is taking more resources than the Dwarfguard, thus the throughput does not scale 
by adding more handler threads.
Next round of tests needs to compare the (CPU) resource usage of Dwarfguard with Apache and 
MariaDB to find the reason of throughput not scaling with number of handling threads.



Peak tests are for 60000 devices which is outside of scope for Dwarfguard 0.8.0



Comparison of some data with later versions

Notes:

Findings for 0.8.0

RAM – RSS MiB % of previous KiB per device % of previous Pushes/sec % of previous

0.6.0

C1 49 100 15 100 142 100
C2 54 100 7 100 182 100
C3 112 100 8 100 189 100
C4
H1 61 100 8 100 193 100
C1 57 116 20 133 143 101
C2 95 176 19 271 175 96
C3 271 242 23 288 161 85
C4 665 100 21 100 190 100
H1 491 805 15 188 155 80

0.8.0

C1 57 100 13 65 126 88
C2 75 79 10 53 237 135
C3 186 69 14 61 284 176
C4 415 62 12 57 324 171
H1 395 80 12 80 237 153
H0 88 100 13 100 97 100

Each minor version adds a lot of functionality but also brings optimizations. Comparable results 
(100%) are considered success and results within 101-120% of resources usage and 99-80% 
throughput are considered ok.
Testing methodics is updated (and testing tools improved) with every version making comparison 
very hard.
The measurements and comparison are based on the basic stability (Stab-2-2 to Stab-16-2) and 
basic performance (originally Bench-4-SSL but that got replaced by Bench-6-SSL in 0.8.0) test 
results.

Memory consumption optimizations resulted in 25% decrease of memory footprint after test. What’s 
even better is roughly 33-45% decrease of the per-device memory footprint.
A number of computation optimizations increased the throughput by 30-70% but given the accent 
was on bringing down the resource usage and not increasing throughput, the resulting throughput 
increase is a nice bonus.

0.7.0 - introduced 
DCL


